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Pineal Enzymes: Regulation of Avian Melatonin Synthesis

Abstract. Groups of 8-week-old chickens were killed at six time points in their
light-dark cycle, and pineal glands were removed and assayed individually
for N-acetvltransferase activity, hydroxyindole-O-methyltransferase activity, and
melatonin content. The tenfold nocturnal rise in melatonin was phased identically
with the 27-fold increase in N-acetyltransferase activity. The relatively small
changes (20 percent) in hydroxyindole-O-methyltransferase activity did not appear
important in causing the large changes in melatonin. The phase of the rhythms
of N-acetyltransferase activity and melatonin content in chickens relative to the
phase of the light-dark cycle was qualitatively similar to that of rats. In contrast,
the sleep-wake cycle of chickens is about 180° out of phase with that of rats.

Melatonin is synthesized from sero-
tonin by [N-acetylation, catalyzed by
serotonin N-acetyltransferase, and O-
methylation, catalyzed by hydroxy-
indole-O-methyltransferase (HIOMT)
(7). Daily rhythms in pineal melatonin
content, serotonin content, N-acetyl-
transferase activity, and HIOMT activ-
ity have been studied in birds; but it
has not been clear which enzyme, if
either, regulates the rhythms in pineal
melatonin and serotonin (2-5). Klein
and Weller (6) presented evidence that
the melatonin and serotonin rhythms
in the rat pineal gland are regulated
by N-acetyltransferase activity. We
examined the daily rhythms of pineal
N-acetyltransferase activity, HIOMT
activity, and melatonin content in an
experiment in which all three deter-
minations were made on homogenates
of each pineal gland. In this experi-

ment, N-acetyltransferase activity ap-
peared to be a major regulatory factor
for the avian melatonin rhythm.

We used 8-week-old chickens (White
Leghorn cockerels, Gallus domesticus)
that had been kept from the day after
hatching in a light-dark cycle of 12
hours of light followed by 12 hours of
dark (LD 12:12). Groups of six
chickens were killed at six time points
in this cycle, and the pineal glands
were quickly dissected out and frozen.
The glands were later thawed and in-
dividually homogenized; HIOMT ac-
tivity, N-acetyltransferase activity, and
melatonin content were measured in
samples of the homogenate (7). In a
separate series, body weights and pineal
weights of eight chickens and eight rats
were determined (&8) to provide a basis
for quantitative comparisons of the bio-
chemical data from the two species.
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N-Acetyltransferase activity varied
by a factor of 27 in the 24-hour cycle,
and melatonin content varied by a
factor of 10 (Fig. 1). Peak activity
occurred in the dark, when chickens
are normally inactive. Values for
HIOMT activity fluctuated by only 20
percent, and the high values did not
all occur at night; indeed, the high
HIOMT value at 0800 occurred when
melatonin content had already dropped
significantly. In order to evaluate sta-
tistically the relation between the
two enzyme activities and melatonin
content, we calculated correlation co-
efficients between the values obtained
at the six time points for individual
animals. A positive correlation between
N-acetyltransferase activity and mela-
tonin content (r=.97) was highly sig-
nificant (P < .001), as evaluated by use
of Fisher’s z-transformation. A signifi-
cant correlation was found between
HIOMT and N-acetyltransferase activ-
ities (r=.38; P<.05); that between
HIOMT activity and melatonin content
was insignificant (r=.22) (9).

Our data for chickens and rats (mid-
night values) indicate that the chicken
has a much larger enzymatic capacity
for the synthesis of melatonin (9).
When data are expressed per gram of
wet pineal, chickens have 7 times the
N-acetyltransferase activity of rats, 600
times the HIOMT activity, and 1.3
times the amount of melatonin. When
body weight rather than pineal size is
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Fig. 1. The accepted pathway for melatonin synthesis in the
pineal gland (left) and graphs of N-acetyltransferase activity,
HIOMT activity, and melatonin content in chicken pineal glands
(right). The standard errors are indicated where they exceed the
size of the symbol. The curves consist only of six points each, and
the connecting lines may not truly delineate the shape of the
oscillations. The hatched area represents the dark portion of the
light cycle. N-Acetyltransferase activity was measured (7) with
one-tenth of a homogenized chicken pineal gland. Activity of
HIOMT was measured by the method of Pelham and Ralph (J5)
with slight modifications: The pineal homogenate added was
one-twentieth of a pineal gland in 5 ul of 0.1M phosphate buffer,
pH 6.8. The final reaction mixture contained 255 ul at pH 7.9.
All samples were first incubated for 10 minutes without sub-
strates. The reaction was stopped with 2 ml of 0.45M borate
buffer, pH 9.95. Melatonin was extracted into 10 ml of chloro-
form; the extract was washed once with borate and once with
IN HC], and a 5-ml portion was evaporated and the residue was
counted. Melatonin was measured by the tadpole bioassay (7).
One-tenth of a chicken pineal gland in 10 ul was diluted with !
ml of deionized water and frozen for shipment to Pittsburgh
where the samples (including buffer blanks) were thawed at

- room temperature | hour before assay and, if necessary, diluted

with distilled, detonized water to bring the sample into the de-
sired concentration range. All samples were coded, and the
melanophore index of the tadpoles was determined indepen-
dently by two people. The specificity of the melatonin bioassay
has been discussed (7). No points of these curves represent
zero or unmeasurable enzyme activity or melatonin content;
all pineal glands had quantities well within the range of the
assays; AcCoA. acetyl coenzyme A; CoA, coenzyme A.

considered, chickens have 4 times the
N-acetyltransferase activity of rats and
more than 360 times the HIOMT ac-
tivity, but the two species have similar
quantities of melatonin in their pineal
glands. The changes in HIOMT ac-
tivity in constant darkness are in op-
posite directions in day-active chickens
compared to night-active rats (9).
However, melatonin content and N-
acetyltransferase activity have similar
daily rhythms in both animals; that is,
these values are high at night and low
in the day for both species. The phase
of these rhythms is not determined by
the nocturnal or diurnal life-style of
the organisms, but, rather, is linked to
the environmental lighting and the ac-
tivity state normally consonant with
that lighting. That is, high N-acetyl-
transferase activity and melatonin con-
tent are associated with darkness and
locomotor activity in rats, but with
darkness and locomotor inactivity in
chickens. If this constitutes a system
for keeping track of environmental
lighting, it may be especially important
to reproduction, which is controlled by
the lengths of the daily dark and light
periods in many species.

From the data presented here, it
appears that cyclic changes in pineal
melatonin content in chickens are
regulated by production of N-acetyl-
serotonin at the N-acetyltransferase
step. Thus, this regulatory mechanism
seems to exist in two classes of verte-

brates, mammals (6) and birds. The
rhythm in serum melatonin concentra-
tion in chickens is in phase with the
rhythm in pineal melatonin content,
and is abolished by pinealectomy (10).
These observations indicate that in
birds, pineal melatonin release is prob-
ably a passive process determined by
the rate of melatonin production. Mel-
atonin release in mammals has not been

“studied in vivo; however, in cultures of

rat pineals, the regulation of melatonin
appearance in the culture medium has
been linked with the regulation of mel-
atonin production at the N-acetyltrans-
ferase step (/1).

Although HIOMT does not appear
to be crucial to the rhythmicity of
melatonin production, the enzyme does
exhibit reproducible changes in activity
when animals are subjected to periods
of constant light or darkness for 5 days
or longer (3, 12). It is possible that
HIOMT activity exhibits tonic re-
sponses to environmental lighting that
require several days to develop, where-
as N-acetyltransferase activity is more
rapidly responsive to environmental
lighting on a daily rhythmic basis.
Barfuss and Ellis (/3) reported an
annual cycle in HIOMT activity that
is the mirror image of the testicular
cycle in sparrows. This supports the
seasonal role for HIOMT in regulation
of melatonin synthesis in birds, as sug-
gested by Bickstrom et al. (4).

Physiological experiments show a



possible relation between the pineal
gland and circadian rhythms in two
ways: (i) The pineal gland is necessary
in sparrows for the persistence of the
normal endogenous rhythms of body
temperature and locomotor activity,
and both sleep and body temperature
changes are produced by injection of
the putative pineal hormone, melatonin
(14). (ii) The hamster pineal gland
has been linked to reproductive phe-
nomena in ways that involve day
length and circadian rhythms (/5). It
is not yet possible, however, to fully
relate the biochemical findings to the
physiological studies. The circadian
rhythm of locomotor activity of some
but not all vertebrates (I6) may be
dependent on a pineal melatonin
rhythm controlled by N-acetyltrans-
ferase activity.
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